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Asymptotic Behavior of Mayer Cluster Sums
for the One-Dimensional Ising Model
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The properties of the high-field polynomials L,(u) for the one-dimensional spin
i Ising model are investigated. [ The polynomials L,(u) are essentially lattice gas
analogues of the Mayer cluster integrals b,(T) for a continuum gas. ] It is shown
that u~'L,(u) can be expressed in terms of a shifted Jacobi polynomial of degree
n—1. From this result it follows that {u 'L (u);n=1,2..} is a set of
orthogonal polynomials in the interval (0, 1) with a weight function w(u)=u,
and ™ 'L,(u) bas n— 1 simple zeros {u,(v); v=1, 2,.., n — 1} which all lie in the
interval 0 <u < 1. Next the detailed behavior of L,(u) as n— oo is studied. In
particular, various asymptotic expansions for L,(u) are derived which are
uniformly valid in the intervals ©<0, 0<wu <1, and u> 1. These expansions
are then wused to analyze the asymptotic properties of the zeros
{u,(v);v=1,2,.,n—1} It is found that

Un(V) ~ 30/ [1= (1 ,/12) =2 + (1 ,/720)(=3 + 2/ ) n
+(j2,/20160)(40+ 4%  —j1 Yn 0+ -]
Upn = V)~ 1= (5 A n =2+ (5 ,/48)( =2+ j§ ) n ™"
+(J5,,/2880)0(2+ 975, — 25, ) n O+ -

as n— oo with v fixed, where j, , denotes the vth zero of the Bessel function
Ju(2).

KEY WORDS: One-dimensional Ising model; high-field polynomials; Mayer
cluster sums; asymptotic analysis; zeros.

1. INTRODUCTION

The spin 4 Ising model of a ferromagnet on a d-dimensional lattice 2, with

N-sites has the Hamiltonian N
H=—JY o,0,—myB ) o,

() i=1

(L.1)
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where the first summation is taken over all nearest neighbor pairs (ij) in
the lattice 2, B is the magnetic field, o,= +1, and J, m, are positive
constants. (A comprehensive review of the Ising model has been given by
Domb.") In the thermodynamic limit N — oo the free energy per spin
g(T, B) for the system is given by

1
~¢(T, B)/knT= lim —InZ(T, B) (1.2)
N—

where

ZAT,B)= ¥ - ¥ exp(—#/kyT) (13)
g1= %1 oN= %1
is the partition function.
A standard procedure for investigating the thermodynamic properties
of the Ising model is to expand g(7, B) as the high-field series*

1 oG
—o(T, Bk T= *glnu——ilnu-i— S L)y (1.4)
n=1
where
u=exp(—4J/ky T) (1.5)
u=-exp(—2myB/kyT) (1.6)

and g is the coordination number of the lattice Q,. The coefficient L, (u) is
a polynomial of degree ng/2 in the variable u except when # and ¢ are both
odd. [For this special case L,(u) is a polynomial of degree ng in the
variable ¥*/2.] It can also be shown that L,(u) can always be written in the
form

L, (u)=u""Q,(1/u) (L.7)

where Q,(1/u) is a polynomial in the variable 1/u. If we interpret the Ising
model as a model of a lattice gas,® we find that the polynomial Q,(1/u)
is a lattice analogue of the Mayer cluster integral b,(7) which occurs in the
activity expansion for the pressure of an imperfect gas. Sykes ez al.**"® have
used sophisticated graph-theoretic methods to derive explicit expressions
for a considerable number of the initial coefficients L,(u) for a variety of
two- and three-dimensional lattices.

The expansion (1.4) is of particular interest in the theory of phase
transitions because the asymptotic behavior of L () as n — oo, with u fixed
and T less than the critical temperature 7T,, essentially determines the
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behavior of the free energy g(7, B) in the neighborhood of the phase
boundary p=1. Although no exact asymptotic analysis of L,(x) has yet
been carried out, a number of interesting approximate theories have been
developed. Essam and Fisher'” and Fisher"®!" have used heuristic
arguments based on the droplet model of condensation to derive the
following asymptotic representation for L, (u):

L, (1) ~ An = (JuV?)Pr : (1.8).

as n— oo, where 4, D, A, 7, and s are constants with 0 <s< 1. This
asymptotic formula is inconsistent with the classical theory of condensation
and the numerical work of Gaunt and Baker'¥ on the metastable state of
the Ising model because it gives rise to an essential singularity in the free
energy on the phase boundary B=0, T'< T,."%'13) Following the work of
Fisher, there have been several empirical attempts to modify the droplet
model formulation and to extend its range of validity."'* '¢) Attempts have
also been made by Domb and Guttmann‘”’ and Domb"®!*) to reconcile
the classical theory of condensation with the conflicting predictions of the
droplet model by developing a more systematic diagrammatic approach to
the problem.

The main aim in this paper is to determine the detailed asymptotic
behavior of L,(u) as n— o for the one-dimensional spin-3 Ising model. In
particular, various uniform asymptotic expansions for L, (u) are derived by
using the general methods developed by Darboux®® and Olver.***) These
expansions are then used to investigate the asymptotic properties of the
zeros of L, (u) as n— oo. It is hoped that the exact results obtained will
provide some insight into the asymptotic behavior of L,(u) for the two-
and three-dimensional Ising models.

2. PROPERTIES OF L,(u) IN ONE DIMENSION

It is readily seen from (1.4) that, in general, the magnetization per spin
of the Ising model

m= —(0g/0B)r (21)
has a high-field series representation

mimy=1-2 i nL,(u) u" (2.2)

n=1

For the particular case of the one-dimensional Ising model we also have
the closed-form expression®

mjmo= (1= w)[1=2(1 =2u) p+p*117 (23)
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If the standard generating function

(1 —2xpu+p*) 2= z P, (x)u" (2.4)

is applied to (2.3) and the resulting expansion is compared with (2.2), we
obtain the formula

Ln(u)zzllg[Pn,l(l~2u)—P,,(1—~2u)] (n=1) (2.5)

where P,(x) is the Legendre polynomial of degree »#. This result has also
been given by Bessis et al.?®
A simplification of (2.5) can be achieved by using the relation®*

[+ 5+ )11 —x) PEAEP(x) = (n+ o) PP x) —nPFP(x)  (26)
with o = =0, and the identity
PPO(x) = P,(x) (2.7)

where P{*#)(x) denotes the Jacobi polynomial of degree ». In this manner
we find that

u
L,,(u)=;1-P§f;Ol)(1 —2u) (2.8)
We can write (2.8) in the alternative form

L,(u)==(=1)" R"Yw) (29)

n—1

where R™#)(4) denotes the shifted Jacobi polynomial of degree n.*® In the
notation of Magnus and Oberhettinger,*® we also have

L,(u)=uZ, (2,2,u) (2.10)

where
Flo, v, u) = F(—n, n+o;y;u) (2.11)

and , F, is the hypergeometric function.
We can now use the standard theory of Jacobi polynomials©®*2%27 to
obtain the Rodrigues’ formula

L,,(u)z%D""[u"(l—u)”“] (2.12)
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and the three-term recurrence relation

Qn—1)n+1)2 L, ,(u)—2n[2n> — (4n* — 1) u] L,(u)
F@n+Dn—1L, (u)=0 (2.13)

where D=d/du and n=1, 2, 3,.... From the orthogonality property

1
[ ROD@) ROV w) wdu =Y+ 1), (2.14)
0

we see that {u~ 'L, (u);n=1,2,3,.} is a set of orthogonal polynomials in
the interval (0, 1) with a weight function w(u)=u. It is also evident that all
the (n— 1) zeros of the polynomial u 'L,(u) are simple, and located in
the interval 0 <u < 1. More generally, the numerical work of Gaunt'*®
indicates that the coefficient L,(#) for the two- and three-dimensional
spin 3 Ising models always has (n—1) simple zeros in the interval
u,<u<1, where u_ is the critical value of u. (Note that for the Ising model
in one dimension u,=0.)

3. DARBOUX ANALYSIS OF L (u) IN ONE DIMENSION

In this section the method of Darboux®® will be used to determine
the asymptotic behavior of L,(v) as n— oo with u fixed and negative.
Similar results will also be given for the case u > 1. We begin by writing the
generating function (2.4) with x=1—2u in the alternative form

(u—e*Wu—e )] 2= Z P, (cosh 84) u (3.1
n=0
where the parameter 3, = 3y(u) is defined by
3 = arc cosh(1 — 2u) (3.2)
with <0 and 34> 0. Next we carry out the change of variable
p=e (1 —h) (3.3)

and expand the left-hand side of (3.1) in powers of 4 about the dominant
branch-point singularity at u= e~ ". This procedure yields

(3% csch 3,)" Z <—1/2

m > (3¢~ P csch 8, (1 ;#eﬂo)m-%

i L(cosh 3¢) p' (3.4)
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where (~"?) is a binomial coefficient. If we now formally expand the left-
hand side of (3.4) in powers of y and equate the coefficients of u* we obtain
the asymptotic formula

P,(cosh 35) ~ (—1)" e"®(e® csch §,)"/?

x i ( 1/2)( 2) (2e =% csch 9,)" (3.5)
—0 h

- m

as n — o0, with fixed u <0.

It is possible to express the expansion (3.5) in terms of the , F, hyper-
geometric series by writing the two binomial coefficients in terms of gamma
functions. The final result is

P, (cosh 3q) ~ e"®(1e® csch §5)2 [(L),/n!]

x o, Fy(3, ;4 —n;—Le % csch §,) (3.6)
as n — oo, with fixed u <0, where

(3)p=T(n+3)/17(3) (3.7)

From the formula (3.6) we can readily derive the basic asymptotic expan-
sion

P,(cosh §,) ~ (2nn sinh §,) =12 ol 3)% i a,(3.)(8n)~"  (3.8)

m=0
as n - o0, with fixed u <0, where

ag(do) =1 (39)
a,(3)= —(2—coth 3,) (3.10)
a,(9) = (4 — 12 coth 9, + 9 coth? 9,) (3.11)
a;(9) = 3(8 — 4 coth 9, — 18 coth? 9, + 15 coth® 3,) (3.12)

a,(99) = —E(16 — 160 coth 3, + 120 coth? 9,
+ 200 coth® 3, — 175 coth* 9,) (3.13)

If we make the replacement n—>n—1 in (3.8), we obtain the similar
expansion

P, _(cosh 94}~ (2rn sinh §4) " ¢ Z LA(90)(8u)~™™  (3.14)
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as n— o0, with fixed u <0, where

do(9o) = (3.15)
d,(89) = (2 + coth 3,) (3.16)
d>(3¢) = 34 + 12 coth 34 + 9 coth? §,) (3.17)

)=
dy(84) = — 3(8 + 4 coth §y— 18 coth® o — 15 coth® 95)  (3.18)
du(99) = — 216 + 160 coth 3, + 120 coth?

— 200 coth® §,— 175 coth* &) (3.19)

We now substitute the expansions (3.8) and (3.14) in the formula (2.5).
This procedure yields the important result

L,(u)~ —in~"n**[tanh(3,/2)]"* e"% i fon(30)(81 sinh 34) ™™ (3.20)

m=0
as n --» o0, with fixed u <0, where

fo(8o) =1 (3.21)
£1(86)= — (24 cosh 8,) (3.22)
f2(8) = — (4 + 12 cosh 9, - cosh? 3,) (3.23)
f3(3) = — (8 + 4 cosh §,+ 10 cosh* 3, — cosh> §,) (3.24)
S4(89)= — 316 + 160 cosh 3, + 8 cosh?® 9, + 40 cosh? 3,

+ cosh* ;) (3.25)

Finally, we investigate the behavior of L,(u) as # — co with fixed u > 1.
For this case we write (2.5) in the alternative form

L (u)= L—;;;iii [P,_,(cosh )+ P,(cosh §,)] (3.26)

where
8, =arccosh(2u—1) (3.27)

with #>1 and 9, >0, and then apply the expansions (3.8) and (3.14). In
this manner we find that

Ly(u)~ 3~ 1)~ m Vi [coth(8,/2)] &

i 8,)(8nsinh §,) 7" {3.28)
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as n — oo, with fixed u> 1, where

go(9,)= (3.29)
2,(8,)=(2—cosh 9,) (3.30)
2(8,) = — 44— 12 cosh 9, — cosh? 9,) (3.31)
25(9,)=2(8 —4 cosh 9, + 10 cosh? 9, + cosh® 9,) (3.32)
24(8;)= — 316 — 160 cosh 9, + 8 cosh® 9, — 40 cosh® &,
+cosh* 3,) (3.33)

The basic asymptotic expansions (3.20) and (3.28) are only applicable
in the nomphysical intervals u <0 and u> 1, respectively. Furthermore,
these expansions clearly break down when # is large and n39, is small, where
i=0, 1. However, we shall find in the following sections that they play a
crucial role in the derivation of uniform asymptotic expansions for L, (u)
which have a wider range of validity.

4. UNIFORM ASYMPTOTIC EXPANSIONS FOR L, (u)

In this section we shall use the methods of Olver®*) to derive an
asymptotic expansion for L,(u) which is uniform with respect to the
variable ¥ when u lies in the interval ¥ <0. A similar result which is valid
in the interval u > 1 will also be given.

We begin by considering the standard differential equation’

(1—x*) D?*PEO(x)— (1 +3x) DPO(x) +n(n+2) P0(x)=0  (4.1)

24)

where D =d/dx. If we reduce (4.1) to its normal form,® we find that
y(x)=(1=x)(1+x)"? P,1(x) (42)
satisfies the simplified differential equation
Dy+[(n+1)>(1—x) "+ X1+x) 2] y=0 (4.3)
From this result and the formula (2.8) we readily see that
w(u)=(1—u)"* L,(u) (44)
is a solution of the differential equation
d2
du

It is interesting to note that (4.5) has transition points®!) at =0 and 1.

2-H:nzu’l(lfu) 'yl —u) 2 lw=0 4.5)
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Next we change the variables (u, w) in (4.5) by using the transforma-
tions

u=1(1—cosh 9q) (4.6)
w = [(sinh 94)/9, 1" W (4.7)

This procedure yields the further differential equation

aewoLdw
d9§ —S—OE+[H +f(3)] W (4.8)
where
J(90) =3[ —(3/93) + csch? 9, (1 + 2 cosh 94)] (4.9)

and &, > 0. The function f(9,) is analytic at §,=0 provided that we define
f(0)=0. We now apply to (4.8) a theorem proved by Olver.®*?) In this
manner we obtain the uniform asymptotic expansion

L,(u)~ C,[(80/2) tanh(8,/2)1" [ll(m%) i D3 (30)(8n) ™™

s=0

+ 1,{n8y) i D§2L1(90)(8n)"k1] (4.10)

5=0

as n— oo with 35> 0 and u <0, where I,(z) denotes a modified Bessel func-
tion of order v, C, only depends on the integer n, and the coefficient
DP(9o)=1. The result (4.10) is much more powerful than the Darboux
expansion (3.20) and gives an accurate approximation for L, (x) when » is
large and n3, has any value in the interval (0, co).

Olver® has shown that the coefficients DP(8,) (m =1, 2,...) in (4.10)
can be generated, at least in principle, by using two coupled integral
recurrence relations with the initial condition D{"(3,) = 1. For the simplest
case, we find

DP(9,) =4 faof(t) d (4.11)
0

where the function fis defined in (4.9). The evaluation of this integral gives
the formula

D®(35) =8, '[3 = (o/sinh §,)(2 +cosh J)] (4.12)

822/58/3-4-4
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It is not feasible to carry out this procedure for the higher-order coefficients
because of the large amount of algebra which is involved.

Fortunately, it is also possible to determine the coefficients D2(9,)
(m=1, 2,...) by replacing the Bessel functions in (4.10) with the asymptotic
representation®”)

I(z)~(2rz) V?e* i (— 1) (v, m)(2z)~™ (4.13)

as z — oo, where

(v, m)=(2""m!)~! ﬁ [4v?— (2k—1)?] (m=1) (4.14)

k=1

with (v, 0) = 1. A comparison of the resulting expansion with the equivalent
Darboux expansion (3.20) enables one to obtain the required formulas for
D©(8,) (m=1, 2,...). The final results are

DP(9e) =1 (4.15)
DO(39) =39, [3+ 40 f1(36)] (4.16)
D90y = (285) ' [1054 304, f,(3) + 242 f5(3)] (4.17)
D) = (293) 1 [105— 1544 £1(35) + 642 £>(8¢)
+ 243 f3(9,)] (4.18)
DP(86)=(833) 7" [10395-- 12604, f,(3;) + 42042 f>(3,)
+ 12043 /5(3¢) + 848 f4(30)] (4.19)
where
Ao = Jg/sinh 3 (4.20})

This analysis also yields the additional result
C,=—1/n (4.21)

A uniform asymptotic expansion for L, (x) which is valid for u> 1 can
be derived by first applying the transformations

u= 3(1+cosh 4,) (4.22)

w=[(sinh 9,)/8,]"2 W (4.23)
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to (4.5). This procedure leads to the differential equation

aW_LdW T Losylw 424
d9? ~ 9,49, T |" Tg &Y (4.24)

where
2(9;) =3[9, >+ csch? 3, (1 —2cosh 4,)] (4.25)

and 9, > 0. The function g($,) is analytic at $, =0 provided that we define
§(0)= —1/6. We now apply to (4.24) the theorem D proved by Olver.*?
This procedure yields the uniform asymptotic expansion

Ly(u)~ C,[(8,/2) coth(8,/2)]"" [lo(nsn S DU, )(8m) >

s=0

+1;(nd,) i DQISLI(QI)(SH)’ZS”} (4.26)
s=0

as n— oo with 8, >0 and u> 1, where C, only depends on the integer n
and the coefficient D{(3;) = 1.

The coefficients D)(9,) (m=1,2,..) and C, may be determined by
substituting (4.13) in (4.26). If the resulting expansion is compared with the
Darboux expansion (3.28), we find that

C,=(—1)""n (4.27)
D8, =1 (4.28)
D) =9 [—1+4,g,9,)] (4.29)
DI =023 " [—15+64,g,(3))+247 g,(3,)] (4.30)
D9 =28 [=T75+94, g1(%,) — 247 £:(8,)

+243 g,(8))] (4.31)

D{P(9,)=(83%) 1 [ 4725+ 4204, g,(3,) — 6047 g,(3,)
+ 2447 g5(3,) + 847 g4(9,)] (4.32)

where

A4, =3, /sinh &, (4.33)

It should be noted that the coefficients D®(3,) (k=0, I;m=1,2,..) in the
uniform expansions (4.10) and (4.26) are all well-behaved functions of 4,
in the limit §,—0, (more precisely, the coefficients have removable
singularities at 3, =0).
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It has been shown by Olver®® that the basic asymptotic expansion
(4.10) can also be written in the alternative form

L)~ —(1/n)[(8/2) tanh(85/2)]" [1-+ » 149?(90>(8n)-2f]

s=1

x 1 [n.90+n30 i B(Zg)(SO)(Sn)ZS} (4.34)

s=1

as n— oo, with 9,>0 and u < 0. The coefficients 42)(3,) and BY(3,) may
be related to the coefficients D'9(3,) (m=1,2,..) in (4.10) by expanding
the Bessel function in (4.34) as a Taylor series. Standard recurrence
relations are then used to express the derivatives I'”(n9,) in terms of
1,(n3) and I,(n3,). The final results are

B(80) =88, 'D{V(S,) (4.35)
APN(G0) = D(J0) — 3LD1(90)1* = 894 "D{(y) (4.36)

B(30) =835 "D(80) — 835 D" (8,) DY(S,)
+395 ' [DV(36)T° + 96852 [D(30) 1 (4.37)

The application of similar methods to (4.26) yields the further
asymptotic representation

L)~ (— 1y ”HSQNMMSQJW[ i )*ﬂ

x I, [n91+n81 Y BU(S )(sn)ﬂ (4.38)

s=1

as n — oo, with 3, >0 and u > 1. The first few coefficients in this expansion
are given by

BM(9,)=837DV(I,) (4.39)

A5(8,)=D{(3,) —3[D{"(8,)]? (4.40)

B3 (8,)=887'D{(8,) 88, 'D{(8,) D{(8,)
+397'IDV(9) 1 +328, °[D{V(9,) ] (4.41)

We shall find in Section 6 that the results (4.34) and (4.38) are particularly
useful for analyzing the asymptotic properties of the zeros of L, (u).
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5. ASYMPTOTIC BEHAVIOR OF L, (u) FOR O0<u<1

The asymptotic properties of L, (u) in the physically significant interval
(0, 1) can now be investigated by applying the transformation $,=i0,
(0 <6, <) to the basic result (4.10). We find that

L) ~n="T(0/2) tan(eo/zn“{ i ©(0,)(8n)

+ne) T ED, @0)sm > | (51)

5=0

as n — 20, where

A, =arc cos(1 — 2u) (O<u<l) (5.2)
ES(00) = D§)(i0,) (5.3)
E(22)+1(00)EiD(22)+1(i90) (5.4)

and J,(z) denotes a Bessel function of order v. The first few coefficients
E©(8,) (m=0, 1, 2,..) are given by the explicit formulas

EO(8,) =1 (5.5)
E©(0,) = 0 '[3— 5o(2 + c0s 0,)] (5.6)
E©(0,) = —(262)~" [105 — 306(2 + cos 6,)

— 044+ 12 cos 8, —cos? 6,)] (5.7)

E©(0,) = — (202) " [105 + 1550(2 + cos 0,)

—3685(4 + 12 cos 0, — cos? 8,)

—563(8 +4 cos 0, + 10 cos? 8, — cos® 6,) ] (5.8)
E©(8,) = 3(80%) 1 [3465 + 4208,(2 + cos )

—~7063(4 + 12 cos B, — cos? 6,)

—1006;(8 + 4 cos 0, + 10 cos? 8, — cos> )

—734(16 + 160 cos 6, + 8 cos* 4,

+40 cos? 8, + cos® 6,)] (5.9)

where

So=0,/sin 8, (5.10)
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It is evident that (5.1) provides one with a uniform expansion for L,(u)
which is particularly useful in the neighborhood of the critical point u=0.

In the limit u— 1— the expansion (5.1) breaks down
presence of a tranmsition point at u=1.

This difficulty can be overcome by applying the
31 =16, (0< 8, <7) to the result (4.26). Hence we obtain

0

L)~ (— 11~ n="[(8,/2) cot(8,/2)] " [Jome )

+J(n8) i EX, (6,)(8n) >~ ']

as n — o0, where

6, =arc cos(2u—1) O<u<l)
ES)(0,)=DL)(i0,)
EY, (0,)=iDSY, (i8,)

2s+1

The first few coefficients E(6,) (m=0, 1, 2,...) are
EQ(0))=1
E{N(0,)=—07'[1—5,(2—cos 8,)]
EM(0,)=(20%)"' [15—68,(2 —cos 0,)

+63(4—12cos 6, —cos? 0,)]
E®(0,)=(203)"1[75—96,(2 —cos 8,)
—382(4—12cos 8, —cos? 0,)

because of the

transformation

E(0,)(8n) =%

(5.11)

(5.12)

(5.13)
(5.14)

(5.15)
(5.16)

(5.17)

—563(8—4cos 0, +10cos? B, +cos’ 8,)] (5.18)

E&(6,)= —3(80%)~" [1575—1406,(2 —cos 0,)
—106%(4—12cos 0, —cos? )

—2083(8 — 4 cos 0, + 10 cos? 8, + cos®

+769(16 — 160 cos 8, + 8 cos? 8,
—40cos® 0, +cos* 6,)]

where

§,=0,/sin 6,

01)

(5.19)

(5.20)
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Table . Comparison of the Exact Values of
L (), (n=2,3,...,15) with
the Corresponding Asymptotic Values*

n Exact L,{(1/2) eo(n) e (n)

2 1/8 74x 1073 40x107°
3 —1/12 8.6x1077 12%x10°°
4 —3/64 —9.2x1077 —-9.2x 107
5 3/80 —84x10°¢ —42x1077
6 5/192 6.5x 10-¢ 8.1x10-¢
7 —5/224 12x10-¢ 47x10°8
8 —35/2048 —9.8x10~° —14x10-%
9 35/2304 —27x10? —9.0x107°
10 63/5120 22x107° 34x107°
11 —63/5632 8.0x 1010 24x10°
12 —77/8192 —67x107°  —1.1x10~°
13 231/26624  —28x1071°  —80x 1010
14 429/57334 24x10°1 40x 10710
15 — 143/20480 1.2x 10710 31x10710

¢ The quantities ey(n) and e,(n) are the differences between
the asymptotic values of L,(1/2) as determined from the
formulas (5.1) and (5.11), respectively, and the exact
value of L,(1/2).

The coefficients E%(0,) (k=0, 1;m=1,2,..) in the expansions (5.1) and
(5.11) are all well-behaved functions of 6, in the limit 8, —0 (more
precisely, the coefficients have removable singularities at 8, =0).

In order to provide a check on the analysis in this section the uniform
expansions (5.1} and (5.11) have been used to calculate L, (u) for 2<n< 15
with u=1. The results are given in Table I. We see that the asymptotic
approximations for L,(3) are in excellent agreement with the exact value.
Finally we note that nonuniform expansions for L,(u) which are valid in the
oscillatory region 0 <u < 1 can be established by substituting the standard
asymptotic expansion for J,(z) in (5.1) and (5.11).

6. ASYMPTOTIC PROPERTIES OF ZEROS OF L (u)

The polynomial u~ 'L,(x) has (n—1) simple zeros u,(v)
(v=1,2,.,n—1), which are all located in the interval 0 <u< 1. These
zeros will be enumerated in ascending order, with

O<u,(l)<u,(2)< -~ <u,n—1)<1 (6.1)
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We shall investigate the asymptotic properties of u,(v) by first applying the
transformation 9, =i6, (0 <0, <) to (4.34). This procedure yields

L) ~ (1/n)[ (00/2) tan(86/2)1" [1 Ly G;‘?(eo)(smﬂ

s=1

xJ, [n@o + nb, i H(z‘;)(QO)(Sn)zs] (6.2)
as n — o0, where A—I
H(0,) = — 805 'ELP(6,) (6.3)
GO(By) = EQL(0,) + L EL(0,) 17 + 80, 'EL(0,) (6.4)
H(0,) = —80, 'E(0,) + 865 ' E(0,) ES(0,)
+ 305 TLE™(05)1% + 960, 2 [ E(8,) 1 (6.5)

and the coefficients E£©(6,) (m=1,2,3) are defined in Section 5. The
parameter 8, is determined by the relation (5.2) with 0 <u <1.
We see from (6.2) that L, (u) will be asymptotically equal to zero when

=, | 14 T HE0, )80 | (66)
s=1

where v=1,2,..,n—1 and j, , is the vth zero of the Bessel function J,(z).

If the implicit transcendental Equation (6.6) is solved for the quantity 0, .,

then the vth zero of L,(u) is given by

4, (v) ~ 5(1 — cos 6, ,) (6.7)

where v=1, 2,.., n— 1. This procedure has been carried out for n=20 by
applying a direct iterative method to Eq. (6.6) with the coefficients HY” and
H'” and an initial solution 6, , ~ j, ,/n. The resulting asymptotic values for
us(v) (v=1, 2,.., 19) are compared with the corresponding exact values in
Table II. We see that (6.6) gives a highly accurate representation of the
zeros uy(v) (v=1, 2,..., 19), especially for small values of v. The turning
point at u=1 is responsible for the steady increase in the error g,(v) as v
increases.

It is also possible to analyze the asymptotic properties of u,(v) by
applying the transformation 9, =i0,(0 <8, <n) to (4.38). In this manner
we find that

L,(u)~(=1)"""n""[(6,/2) cot(,/2)]" [1 + i G(zl)(el)(fﬁn)“]

s=1

x Jy [n@l +nb, i H(zi)(Bl)(8n)’23} (6.8)

s=1
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Table Il. Comparison of the Exact Values of the Zeros u,y(v) (v=1, 2,..., 19)
with the Corresponding Asymptotic Values®

v Exact u,(v) go(V) &(v)
[ 0.009 148 194 729 044 1.1x1071 1.6x107¢
2 0.030447 362919 779 13x1071 1.7x1077
3 0.063 304 151 925 635 58x1071 39x1078
4 0.106 906 865 018 155 1.8x 10712 13x1078
5 0.160 181 384 291 289 46x 10712 55x107°
6 0.221 815777 023 238 1.0x10~4 26x107°
7 0.290 292 348 346 098 20x10~H1 1.4x107°
8 0.363 924 955 120 729 3.9%x 101 7.8x 10710
9 0.440 900 507 350 968 7.3x 1071 46x 10710
10 0.519 323 606 421 448 1.3x107%° 2.8x 10710
11 0.597 263 213 834 923 25x1071 1.8x107%
12 0.672 800 199 236 188 50x10°1° 1L.1x 10710
13 0.744 074 596 517 897 9.1x1010 70x1071
14 0.809 331 405 095 237 1.9x107° 44x10~U1
15 0.866 963 8§11 441 901 43x107° 27x107 1
16 0.915 552777 215790 1.2x1078 1.5x10~1
17 0.953 902 066 951 569 40x 1078 7.5%x 10712
18 0.981 068 162 968 412 22x1077 29x10712
19 0.996 388 357 181 443 39%x10°° 54x1071

“ The quantities eq(v) and &,(v) are the differences between the asymptotic values of u,o(v) as
determined from the formulas (6.6) and (6.13), respectively, and the exact value of u,(v).

as n — o0, where

HP(0,)= 80, "E{(0,) (6.9)
G(8,)=ES(6,) + 3[EM(6,)7? (6.10)
H{O,)= 80, "E{(0,)+ 80 ' ED(0,) ES(0,)

+ 807 EM0,)] + 3202 E{(6,) T (6.11)

and the coefficients E(0,) (m=1,2,3) are defined in Section 5. The
parameter 8, is determined by the relation (5.12) with 0 <u < 1. It follows

from (6.8) that the zeros of L,(«) have the alternative asymptotic represen-
tation

u(n—v)~3(1l+cosf,,) (6.12)

where v=1,2,.,n—1, 8, , satisfies the implicit transcendental equation

jo,vzne,,v[l Ly Hgi?(el,v)(sm'h] (6.13)

s=1
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and j, , is the vth zero of the Bessel function Jy(z). Equation (6.13) has
been solved numerically for # =20 with the coefficients H¢" and H{", and
the resulting asymptotic values for u,,(20 —v) (v=1, 2,..., 19) are compared
with the corresponding exact values in Table II. It is clear that (6.13) yields
very accurate approximations for the zeros which are close to the turning
point u=1.

When 1 — oo with v fixed the solution 0, , of (6.6) will tend to zero as
Ji»/n. For this case we can use the Taylor series

HO0)= %07+ £6* + 0(6°) (6.14)
HO(0)= — 2562 — 259* 1 0(0°) (6.15)

to derive an asymptotic expansion for 6, , in powers of 1/n. The final result
is

00,\) = (jl,v/n)[l - (]%,v/480) ”l74
+()7,/4032)(4—ji ) n 0+ -] (6.16)

If we substitute (6.16) in (6.7), we find that
u,(vV)~5(J/m) [1—=(j1./12)n~?
+(j1./720)0(=3+ 2% yn=*
+(j7,/20160)(40+ 47, — i1 ) n =+ -] (6.17)

as n— oo with v fixed This expansion is consistent with the numerical
work of Majumdar®® and the scaling theory arguments of Gaunt®® for
general Ising model systems, provided that we take u, =0 and the critical
exponent 4 = 1.

In a similar manner we can use the Taylor series

H(@)= —18 2624 0(0%) (6.18)
H(9) =276 1 4033692 1 0 (9*) (6.19)

to obtain the following expansion for the solution 8, , of the transcendental
equation (6.13):

0= o /m)1+(1/12)n"?
+ (1/1440) (112, —T)n 4 -] (6.20)
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The substitution of (6.20) in (6.12}) yields the further asymptotic representa-
tion
Up(n—v)~1—(j5 /A n 2+ (g /48N —2+j5,)n "
+(/5.,/2880)(2+ 975, — 25 ) n =+ -+ (6.21)

as n— oo with v fixed.

Finally, we define M, (a,b) to be the number of zeros u,(v)
(v=1, 2,.., n— 1) which lie in the interval (a, b), where 0<a<b < 1. From
the asymptotic theory of orthogonal polynomials®") it can be shown that

M., (a, b)~jb p(u) du (6.22)

a

as n — oo, where

plu)=(n—1)n " "[u(l—u)]~" (6.23)

7. ASYMPTOTIC BEHAVIOR OF £, (u) AS u—»0+ ANDu—1-

The behavior of L, (1) as n — oo and u — 0+ may be determined by
applying the Taylor series

EO0)= —56° — 56°+0(8) (7.1)
EQ(0)= —&0% — 350°+ 0(6*) (7.2)
EQ0) =26+ 26°+0(07) (7.3)

and (5.2) to the basic result (5.1). In this manner we eventually find that

o)

Luu~ 3y ¥ (Eo)[2m)] " n=" (74)

m=0

as n— o0 and u — 0+, where

W (€)= (2/¢0) J1(&o) (7.5)
ViP(Eo) = (So/6)[371(E0) — £0/5(&0)] (7.6)

§(80) = (£5/120)[6(123 — 5¢7) J,(£o)
~ (12 +42&5) J5(&0)] (7.7)

and

£ = 2nu'? (7.8)



462 Joyce

It is also possible to derive a general formula for the scaling functions
Y O(&,) (m=0,1,2,.) by first using the hypergeometric representation
(2.10) to write L, (u) in the form

u IF(n+k+1) (—u)

L (u)== (7.9)
(&) n,Z, 2 I(n—Fk) kK
If the asymptotic expansion >
Intk+1) e ® ~ 1) gy BEE+2I(k + 1)
AR 7.10
[(n—k) Z Q2m)! n™" (7.10)

as n — oo is now substituted in (7.9), we obtain the closed-form expression

S0 (2D Bk 1) (=5
g‘ (k+ 1) k!

(7.11)

where B{)(x) denotes a generalized Bernoulli polynomial. It can be shown
that (7.11) is consistent with the results (7.5)-(7.7).
In a similar manner the application of the Taylor series

E{(0) =20+ 1L0° + 0(6%) (7.12)
ES(0) = {50° + g50° + 0(6°) (7.13)
“)(0) %9 §1203+0(95) (7.14)

and (5.12) to (5.11) yields the asymptotic expansion

Lohu~(~1y="n=" 3 pOE@m " a2 (115)

as n— oo and v - 1 —, where

Y ) = To(E)) (7.16)
Wi = (E12)[5E,To(E) + (2 ED) J1(€1)] (7.17)
WEE ) = (£,/240)[ (248, +291£5 — 5E3) Jo(&))
+ (=48 + 14487 - 72¢3) J(&1)] (7.18)
and
&, =2n(l —u)'? (7.19)

A general formula for (&) (m=0,1,2,..) can be derived by
applying the relation®”

PO(x)= (= 1) 2 Fy(=n,n+2 15 5+ 4x) (7.20)
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to (2.8). In this manner we obtain

(—I)"u"il ITn+k+1) [-(1—-u)]*
n? (D) I'(n—k) k!

k=0

L(u)=

(7.21)

The substitution of the asymptotic expansion (7.10) in this result gives the
required closed-form expression

lﬁ,(i)(il):i (—2k— 1), BET" D (k+ (=14 /(K1) (7.22)
k=0

where B{*(x) denotes a generalized Bernoulli polynomial. It has been
verified that (7.22) is consistent with the results (7.16)—(7.18).

8. CONCLUDING REMARKS

In this paper we have established uniform asymptotic representations
for the high-field polynomials L,(#) of the one-dimersional spin § Ising
model. These representations have been used to derive the following
asymptotic expansions for the zeros u,(v) (v=1, 2,., n—1):

un(v)~A0(v)n‘2[1~ i Bm(v)n‘z’“] (8.1)
u(n=v)~1— 3 Cp(v)n—2" (8.2)

as n — oo, with v fixed, where the coefficients B,,(v) and C,,(v) (m=1, 2,...)
are polynomials in the Bessel function zeros j, , and j, ,, respectively.

For spin 3, nearest neighbor Ising models on a d-dimensional lattice
Q, with d>1 it appears from the numerical work of Majumdar®® and
Gaunt® that L,(u) still has exactly n — 1 real zeros u,(v) (v=1,2,.., n—1)
which lie in the interval u, <u < 1. However, for d> 1 there are additional
zeros of L,(u) which lie either on the negative real u axis or in the complex
u plane with Im(u)#0. (There is also a trivial multiple zero at u=0.) In
these higher-dimensional models one can use critical point scaling theory
to obtain the leading-order asymptotic formula®®

U, (v) — , ~ Ag(v, @y n= 14 (8.3)

as n— oo with v fixed, where the amplitude A4,(v, 2,) depends on the
lattice 2, and 4 is a standard critical exponent which depends only on the
dimensionality 4 of the lattice. It is clear that the formula (8.3} agrees to

leading order with (8.1) provided that we take u,=0 and 4 =1.
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Recently, D. S. Gaunt (private communication) has also shown that
the asymptotic formula

u,(n—v)~1—-C,(v, Q) n? (8.4)

as n— oo with v fixed is valid for all spin § nearest neighbor Ising models
with d = 1. From this result it is reasonable to expect that the general form
of the expansion (8.2) will be applicable to other higher-dimensional Ising
models. I hope to investigate this conjecture in a future publication.
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